\qquad () \qquad

INVESTIGATE DIVISIBILITY RULLES

Practice 2

Objective:

To investigate and generate divisibility rules for 3 and 6

Instructions:

In this task, you are required to:

- select and apply mathematical problem-solving techniques to recognize divisibility rules for 3 and 6.
- describe the multiples of 3 and 6 as relationships or general rules
- verify whether your divisibility rules works for other examples.

Hints:

1. List some 3-digit numbers, which are multiples of 3 or 6 .
2. Investigate the numbers see if you can recognize simple pattern between these numbers.
3. You might find out more than 1 rule to test if a number is completely divided by 3 or 6 .
4. Describe your rule in mathematical language (words, sentence, symbol, diagrams, tables, etc.)
5. Test your rule with other bigger numbers (say 4-digit numbers, some divisible by 3 or 6 and some do not).
6. You might use calculator to avoid careless calculation mistake.
7. Present your work neatly, tidily and logically.

Investigate and generate divisibility rules for 3

Step 1: List some small numbers that are multiples of 3 to find the pattern of divisibility rules for 3
$3,6,9,12,15,18,21,24,27,30$
$33,99,102,75,96,78,198,1311$
Step 2: Check the final digits for pattern
By looking at the last digit of the above numbers, they are not clear rules since it can be any of the numbers from 0 to 9 .

Step 3: Try adding digits

12	$1+2=3$	102	$1+0+2=3$
15	$1+5=6$	75	$7+5=12$
18	$1+8=9$	96	$9+6=15$
33	$3+3=6$	198	$1+9+8=18$
99	$9+9=18$	1311	$1+3+1+1=6$

Step 4: Describe patterns and rules
From the above step 1, step 2 and step 3, I found out that to test if a number is divisible by 3 or not, the last digit doesn't matter.

But when I add the digits, I found out that the sum would always be a multiple of 3 , such as: $3,6,9,12,15$, 18...

The divisibility rules for 3 can be when the sum of the digits of a number is divisible by 3 , then that number will be divisible by 3.

Step 5: Test my rule with bigger numbers

Examples	Adding the digits	Applying the rules	Divide the number by 3		
37	$3+7=10$	37 is not divisible by 3 since the sum 10 is not a multiple of 3	$37 \div 3=12$ R 1	\quad	$1+1+1=3$
:---:					
111					

My divisibility rule for 3 is adding the digits of the number and if the sum is divisible by 3 , the number will be divisible by 3 too.

I have verified my rules are correct since the sum of 111,111111111 and 37037037 are 3,9 and 30 , which are divisible by 3 . Meanwhile, 37 and 2222 are not divisible by 3 and they don't fulfill the divisibility rules of 3 , their sums of digits are 10 and 8 , which are not divisible by 3 .

Investigate and generate divisibility rules for 6

Step 1: List some small numbers that are multiples of 6 to find the pattern of divisibility rules for 6
6, 12, 18, 24, 30
$102,96,78,198$
Step 2: Check the final digits for pattern
By looking at the last digit of the above numbers, they are $0,2,4,6$ or 8 and they are all even number. BUT it doesn't mean that all even numbers are divisible by 6 , it only tell us that all odd numbers are not divisible by 6 .

Step 3: Try adding digits

12	$1+2=3$	102	$1+0+2=3$
18	$1+8=9$	96	$9+6=15$
24	$2+4=6$	78	$7+8=15$
30	$3+0=3$	198	$1+9+8=18$

Step 4: Describe patterns and rules
From the above step 1 , step 2 and step 3 , I found out that to test if a number is divisibly by 6 or not, the number must be an even number and at the same time the sum of their digits are divisibly by 3 , such as: 3 , $6,9,15,18$.

The divisibility rules for 3 can be when the sum of the digits is divisible by 3 and the number is an even number. That means if any number can be divisible 2 and 3 , then that number will be divisible by 6 also.

Step 5: Test my rule with bigger numbers

Examples	Adding the digits	Applying the rules	Divide the number by 6
37	$3+7=10$	$1+1+1=3$	37 is not divisible by 6 since it is an odd number
111	$4+7+3+4=18$	111 is not divisible by 6, since it is a odd number	$111 \div 6=18 \mathrm{R} 3$
101011110	$1+0+1+0+1+1+1+1+0=6$	4734 is divisible by 6 since the sum 18 is a multiple of 6 and it is an even number	$4734 \div 6=789$
101011110 is divisible by 6 since the sum 6 is a multiple of 3 and it is an even number	$101011110 \div 6=16835185$		

My divisibility rule for 6 is adding the digits of the number and if the sum is divisible by 3 and the number is an even number, then that number will be divisible by 6 too.

I have verified my rule is correct since the digits' sum of 4734 and 10101110 are 18 and 6 , which are divisible by 3 , and both numbers are even numbers; therefore they are divisible by 6 . Meanwhile, 37 and 111 are not divisible by 6, even though their digits' sum can be divided by 3, but they are odd numbers, they don't fulfill both divisibility rules of 6 .

As a conclusion, if a number is an even number and the sum of all its digits are divisible by 3 , then that number is divisible by 6 .

