\qquad () \qquad

INVESTIGATE DIVISIBILITY RULLES

Practice 1

Objective:

To investigate and generate divisibility rules for 2 and 8

Instructions:

In this task, you are required to:

- select and apply mathematical problem-solving techniques to recognize divisibility rules for 2 and 8.
- describe the multiples of 2 and 8 as relationships or general rules
- verify whether your divisibility rules works for other examples.

Hints:

1. List some 3-digit numbers, which are multiples of 2 or 8 .
2. Investigate the numbers see if you can recognize simple pattern between these numbers.
3. You might find out more than 1 rule to test if a number is completely divided by 2 or 8.
4. Describe your rule in mathematical language (words, sentence, symbol, diagrams, tables, etc.)
5. Test your rule with other bigger numbers (say 4-digit numbers, some divisible by 2 or 8 and some do not).
6. You might use calculator to avoid careless calculation mistake.
7. Present your work neatly, tidily and logically.

Suggested Solution:

Investigate and generate divisibility rules for 2

Step 1: List some small numbers that are multiples of 2 to find the pattern of divisibility rules for 2

1 -digit multiples of 2 :
2-digits multiples of 2 :
3-digits multiples of 2 :

2, $4,6,8,10$
$10,12,14,16,18,20 \ldots 32,34,36,38,40 \ldots$
$100,102,104,106,108,110,112,114,116,118,120 \ldots$

By looking at the last digit of the above numbers, they are all $0,2,4,6$ or 8 and all the above numbers are even numbers.

Step 2: Describe patterns and rules
From the above multiples of 2, I found out two divisibility rules for 2:

1. If a number have the last digit as $0,2,4,6$ or 8 it must be completely divided by 2 (without remainder).
2. If a number is an even number, it must be divisibility by 2 .

Step 3: Test my rules with larger numbers (4-digits and 5-digits)
Examples: 1004, 3006, 5007, 7985, 40248, 50879
When applying my rules: 1004, 3006, 40248 are divisibility by 2 since they are all even numbers and their last digits are 4,6 , and 8 .

When applying my rules: $5007,7985,50879$ are not divisibility by 2 since they are not even numbers and their last digits are not 4,6 , and 8 .

Testing:	$1004 \div 2=502$	$3006 \div 2=1503$	$40248 \div 2=20124$
Testing:	$5007 \div 2=2503$ R 1	$7985 \div 2=3992$ R 1	$50879 \div 2=25439$ R 1

Therefore, I have verify my rules are collect since 1004, 3006 and 40248 are divisible by 2 and they all fulfill the divisibility rules of 2 . Meanwhile, 5007,7985 and 50879 are not divisible by 2 and they don't fulfill the divisibility rules of 2 , their last digit are not $0,2,4,6$ or 8 and they are not even numbers.

